Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Sci Rep ; 14(1): 9451, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658630

RESUMO

The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures' reproducibility and replicating them by addressing the insufficient reporting; evaluating their relationship and performances; and proposing a cluster-based approach to combine radiomic signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite the signatures were based on different features, high correlations among signatures and features suggested consistency in the description of lesion properties; (2) although the uncertainties in reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; (3) clustering approaches improved prognostic performance compared to individual signatures. Thus, transparent methodology not only facilitates replication on external datasets but also advances the field, refining prognostic models for potential personalized medicine applications.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Feminino , Masculino , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Idoso , Adulto , 60570
2.
Comput Biol Med ; 172: 108235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460311

RESUMO

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Inteligência Artificial , Qualidade de Vida , Eletrocardiografia , Aprendizado de Máquina
3.
Comput Assist Surg (Abingdon) ; 29(1): 2327981, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38468391

RESUMO

Radiotherapy commonly utilizes cone beam computed tomography (CBCT) for patient positioning and treatment monitoring. CBCT is deemed to be secure for patients, making it suitable for the delivery of fractional doses. However, limitations such as a narrow field of view, beam hardening, scattered radiation artifacts, and variability in pixel intensity hinder the direct use of raw CBCT for dose recalculation during treatment. To address this issue, reliable correction techniques are necessary to remove artifacts and remap pixel intensity into Hounsfield Units (HU) values. This study proposes a deep-learning framework for calibrating CBCT images acquired with narrow field of view (FOV) systems and demonstrates its potential use in proton treatment planning updates. Cycle-consistent generative adversarial networks (cGAN) processes raw CBCT to reduce scatter and remap HU. Monte Carlo simulation is used to generate CBCT scans, enabling the possibility to focus solely on the algorithm's ability to reduce artifacts and cupping effects without considering intra-patient longitudinal variability and producing a fair comparison between planning CT (pCT) and calibrated CBCT dosimetry. To showcase the viability of the approach using real-world data, experiments were also conducted using real CBCT. Tests were performed on a publicly available dataset of 40 patients who received ablative radiation therapy for pancreatic cancer. The simulated CBCT calibration led to a difference in proton dosimetry of less than 2%, compared to the planning CT. The potential toxicity effect on the organs at risk decreased from about 50% (uncalibrated) up the 2% (calibrated). The gamma pass rate at 3%/2 mm produced an improvement of about 37% in replicating the prescribed dose before and after calibration (53.78% vs 90.26%). Real data also confirmed this with slightly inferior performances for the same criteria (65.36% vs 87.20%). These results may confirm that generative artificial intelligence brings the use of narrow FOV CBCT scans incrementally closer to clinical translation in proton therapy planning updates.


Assuntos
Prótons , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Dosagem Radioterapêutica , Inteligência Artificial , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador/métodos
4.
IEEE J Transl Eng Health Med ; 12: 279-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410183

RESUMO

OBJECTIVE: Recent advancements in augmented reality led to planning and navigation systems for orthopedic surgery. However little is known about mixed reality (MR) in orthopedics. Furthermore, artificial intelligence (AI) has the potential to boost the capabilities of MR by enabling automation and personalization. The purpose of this work is to assess Holoknee prototype, based on AI and MR for multimodal data visualization and surgical planning in knee osteotomy, developed to run on the HoloLens 2 headset. METHODS: Two preclinical test sessions were performed with 11 participants (eight surgeons, two residents, and one medical student) executing three times six tasks, corresponding to a number of holographic data interactions and preoperative planning steps. At the end of each session, participants answered a questionnaire on user perception and usability. RESULTS: During the second trial, the participants were faster in all tasks than in the first one, while in the third one, the time of execution decreased only for two tasks ("Patient selection" and "Scrolling through radiograph") with respect to the second attempt, but without statistically significant difference (respectively [Formula: see text] = 0.14 and [Formula: see text] = 0.13, [Formula: see text]). All subjects strongly agreed that MR can be used effectively for surgical training, whereas 10 (90.9%) strongly agreed that it can be used effectively for preoperative planning. Six (54.5%) agreed and two of them (18.2%) strongly agreed that it can be used effectively for intraoperative guidance. DISCUSSION/CONCLUSION: In this work, we presented Holoknee, the first holistic application of AI and MR for surgical planning for knee osteotomy. It reported promising results on its potential translation to surgical training, preoperative planning, and surgical guidance. Clinical and Translational Impact Statement - Holoknee can be helpful to support surgeons in the preoperative planning of knee osteotomy. It has the potential to impact positively the training of the future generation of residents and aid surgeons in the intraoperative stage.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Inteligência Artificial , Articulação do Joelho/diagnóstico por imagem , Osteotomia/métodos
5.
Heliyon ; 10(2): e24377, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312621

RESUMO

This study aimed to develop a robust multiclassification pipeline to determine the primary tumor location in patients with head and neck carcinoma of unknown primary using radiomics and machine learning techniques. The dataset included 400 head and neck cancer patients with primary tumor in oropharynx, OPC (n = 162), nasopharynx, NPC (n = 137), oral cavity, OC (n = 63), larynx and hypopharynx, HL (n = 38). Two radiomic-based multiclassification pipelines (P1 and P2) were developed. P1 consisted in a direct identification of the primary sites, whereas P2 was based on a two-step approach: in the first step, the number of classes was reduced by merging the two minority classes which were reclassified in the second step. Diverse correlation thresholds (0.75, 0.80, 0.85), feature selection methods (sequential forwards/backwards selection, sequential floating forward selection, neighborhood component analysis and minimum redundancy maximum relevance), and classification models (neural network, decision tree, naïve Bayes, bagged trees and support vector machine) were assessed. P2 outperformed P1, with the best results obtained with the support vector machine classifier including radiomic and clinical features (accuracies of 75.3 % (HL), 75.4 % (OC), 71.3 % (OPC), 92.9 % (NPC)). These results indicate that the two-step multiclassification pipeline integrating radiomics and clinical information is a promising approach to predict the tumor site of unknown primary.

6.
IEEE J Transl Eng Health Med ; 12: 171-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38088996

RESUMO

The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. We processed galvanic skin response, electrocardiogram, blood volume pulse, pupillary signal and electroencephalogram from 21 subjects to extract both autonomic and central nervous system indices to assess physiological responses in relation to three types of stimulation: auditory, visual, and auditory/visual. Results show a higher galvanic skin response to sounds compared to images. Electrocardiogram and blood volume pulse show different trends between auditory and visual stimuli. The electroencephalographic signal reveals a greater attention paid by the subjects when listening to sounds compared to watching images. In conclusion, these results suggest that emotional responses increase during auditory stimulation at both central and peripheral levels, demonstrating the importance of sounds for emotion recognition experiments and also opening the possibility toward the extension of auditory stimuli in other fields of psychophysiology. Clinical and Translational Impact Statement- These findings corroborate auditory stimuli's importance in eliciting emotions, supporting their use in studying affective responses, e.g., mood disorder diagnosis, human-machine interaction, and emotional perception in pathology.


Assuntos
Emoções , Som , Humanos , Emoções/fisiologia , Estimulação Acústica/métodos , Audição , Transtornos do Humor
7.
Bioengineering (Basel) ; 10(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136024

RESUMO

Bone segmentation and 3D reconstruction are crucial for total knee arthroplasty (TKA) surgical planning with Personalized Surgical Instruments (PSIs). Traditional semi-automatic approaches are time-consuming and operator-dependent, although they provide reliable outcomes. Moreover, the recent expansion of artificial intelligence (AI) tools towards various medical domains is transforming modern healthcare. Accordingly, this study introduces an automated AI-based pipeline to replace the current operator-based tibia and femur 3D reconstruction procedure enhancing TKA preoperative planning. Leveraging an 822 CT image dataset, a novel patch-based method and an improved segmentation label generation algorithm were coupled to a Combined Edge Loss UNet (CEL-UNet), a novel CNN architecture featuring an additional decoding branch to boost the bone boundary segmentation. Root Mean Squared Errors and Hausdorff distances compared the predicted surfaces to the reference bones showing median and interquartile values of 0.26 (0.19-0.36) mm and 0.24 (0.18-0.32) mm, and of 1.06 (0.73-2.15) mm and 1.43 (0.82-2.86) mm for the tibia and femur, respectively, outperforming previous results of our group, state-of-the-art, and UNet models. A feasibility analysis for a PSI-based surgical plan revealed sub-millimetric distance errors and sub-angular alignment uncertainties in the PSI contact areas and the two cutting planes. Finally, operational environment testing underscored the pipeline's efficiency. More than half of the processed cases complied with the PSI prototyping requirements, reducing the overall time from 35 min to 13.1 s, while the remaining ones underwent a manual refinement step to achieve such PSI requirements, performing the procedure four to eleven times faster than the manufacturer standards. To conclude, this research advocates the need for real-world applicability and optimization of AI solutions in orthopedic surgical practice.

8.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005437

RESUMO

We present a novel architecture designed to enhance the detection of Error Potential (ErrP) signals during ErrP stimulation tasks. In the context of predicting ErrP presence, conventional Convolutional Neural Networks (CNNs) typically accept a raw EEG signal as input, encompassing both the information associated with the evoked potential and the background activity, which can potentially diminish predictive accuracy. Our approach involves advanced Single-Trial (ST) ErrP enhancement techniques for processing raw EEG signals in the initial stage, followed by CNNs for discerning between ErrP and NonErrP segments in the second stage. We tested different combinations of methods and CNNs. As far as ST ErrP estimation is concerned, we examined various methods encompassing subspace regularization techniques, Continuous Wavelet Transform, and ARX models. For the classification stage, we evaluated the performance of EEGNet, CNN, and a Siamese Neural Network. A comparative analysis against the method of directly applying CNNs to raw EEG signals revealed the advantages of our architecture. Leveraging subspace regularization yielded the best improvement in classification metrics, at up to 14% in balanced accuracy and 13.4% in F1-score.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroencefalografia/métodos , Potenciais Evocados , Redes Neurais de Computação , Análise de Ondaletas , Algoritmos
9.
Brain Inform ; 10(1): 26, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801128

RESUMO

OBJECTIVE: Clinical and surgical decisions for glioblastoma patients depend on a tumor imaging-based evaluation. Artificial Intelligence (AI) can be applied to magnetic resonance imaging (MRI) assessment to support clinical practice, surgery planning and prognostic predictions. In a real-world context, the current obstacles for AI are low-quality imaging and postoperative reliability. The aim of this study is to train an automatic algorithm for glioblastoma segmentation on a clinical MRI dataset and to obtain reliable results both pre- and post-operatively. METHODS: The dataset used for this study comprises 237 (71 preoperative and 166 postoperative) MRIs from 71 patients affected by a histologically confirmed Grade IV Glioma. The implemented U-Net architecture was trained by transfer learning to perform the segmentation task on postoperative MRIs. The training was carried out first on BraTS2021 dataset for preoperative segmentation. Performance is evaluated using DICE score (DS) and Hausdorff 95% (H95). RESULTS: In preoperative scenario, overall DS is 91.09 (± 0.60) and H95 is 8.35 (± 1.12), considering tumor core, enhancing tumor and whole tumor (ET and edema). In postoperative context, overall DS is 72.31 (± 2.88) and H95 is 23.43 (± 7.24), considering resection cavity (RC), gross tumor volume (GTV) and whole tumor (WT). Remarkably, the RC segmentation obtained a mean DS of 63.52 (± 8.90) in postoperative MRIs. CONCLUSIONS: The performances achieved by the algorithm are consistent with previous literature for both pre-operative and post-operative glioblastoma's MRI evaluation. Through the proposed algorithm, it is possible to reduce the impact of low-quality images and missing sequences.

10.
Biomark Res ; 11(1): 69, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455307

RESUMO

BACKGROUND: . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS: For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS: The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS: Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.

11.
Radiother Oncol ; 183: 109638, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004837

RESUMO

BACKGROUND AND PURPOSE: Prognosis in locally advanced head and neck cancer (HNC) is currently based on TNM staging system and tumor subsite. However, quantitative imaging features (i.e., radiomic features) from magnetic resonance imaging (MRI) may provide additional prognostic info. The aim of this work is to develop and validate an MRI-based prognostic radiomic signature for locally advanced HNC. MATERIALS AND METHODS: Radiomic features were extracted from T1- and T2-weighted MRI (T1w and T2w) using the segmentation of the primary tumor as mask. In total 1072 features (536 per image type) were extracted for each tumor. A retrospective multi-centric dataset (n = 285) was used for features selection and model training. The selected features were used to fit a Cox proportional hazard regression model for overall survival (OS) that outputs the radiomic signature. The signature was then validated on a prospective multi-centric dataset (n = 234). Prognostic performance for OS and disease-free survival (DFS) was evaluated using C-index. Additional prognostic value of the radiomic signature was explored. RESULTS: The radiomic signature had C-index = 0.64 for OS and C-index = 0.60 for DFS in the validation set. The addition of the radiomic signature to other clinical features (TNM staging and tumor subsite) increased prognostic ability for both OS (HPV- C-index 0.63 to 0.65; HPV+ C-index 0.75 to 0.80) and DFS (HPV- C-index 0.58 to 0.61; HPV+ C-index 0.64 to 0.65). CONCLUSION: An MRI-based prognostic radiomic signature was developed and prospectively validated. Such signature can successfully integrate clinical factors in both HPV+ and HPV- tumors.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Prognóstico , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
12.
IEEE J Biomed Health Inform ; 27(7): 3129-3140, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058373

RESUMO

Evidence is rapidly accumulating that multifactorial nocturnal monitoring, through the coupling of wearable devices and deep learning, may be disruptive for early diagnosis and assessment of sleep disorders. In this work, optical, differential air-pressure and acceleration signals, acquired by a chest-worn sensor, are elaborated into five somnographic-like signals, which are then used to feed a deep network. This addresses a three-fold classification problem to predict the overall signal quality (normal, corrupted), three breathing-related patterns (normal, apnea, irregular) and three sleep-related patterns (normal, snoring, noise). In order to promote explainability, the developed architecture generates additional information in the form of qualitative (saliency maps) and quantitative (confidence indices) data, which helps to improve the interpretation of the predictions. Twenty healthy subjects enrolled in this study were monitored overnight for approximately ten hours during sleep. Somnographic-like signals were manually labeled according to the three class sets to build the training dataset. Both record- and subject-wise analyses were performed to evaluate the prediction performance and the coherence of the results. The network was accurate (0.96) in distinguishing normal from corrupted signals. Breathing patterns were predicted with higher accuracy (0.93) than sleep patterns (0.76). The prediction of irregular breathing was less accurate (0.88) than that of apnea (0.97). In the sleep pattern set, the distinction between snoring (0.73) and noise events (0.61) was less effective. The confidence index associated with the prediction allowed us to elucidate ambiguous predictions better. The saliency map analysis provided useful insights to relate predictions to the input signal content. While preliminary, this work supported the recent perspective on the use of deep learning to detect particular sleep events in multiple somnographic signals, thus representing a step towards bringing the use of AI-based tools for sleep disorder detection incrementally closer to clinical translation.


Assuntos
Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Humanos , Polissonografia , Ronco/diagnóstico , Apneia , Sono
13.
Physiol Meas ; 44(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36787645

RESUMO

Objective. The objective of the present study is to investigate the feasibility of using heart rate characteristics to estimate atrial fibrillatory rate (AFR) in a cohort of atrial fibrillation (AF) patients continuously monitored with an implantable cardiac monitor. We will use a mixed model approach to investigate population effect and patient specific effects of heart rate characteristics on AFR, and will correct for the effect of previous ablations, episode duration, and onset date and time.Approach. The f-wave signals, from which AFR is estimated, were extracted using a QRST cancellation process of the AF episodes in a cohort of 99 patients (67% male; 57 ± 12 years) monitored for 9.2(0.2-24.3) months as median(min-max). The AFR from 2453 f-wave signals included in the analysis was estimated using a model-based approach. The association between AFR and heart rate characteristics, prior ablations, and episode-related features were modelled using fixed-effect and mixed-effect modelling approaches.Main results. The mixed-effect models had a better fit to the data than fixed-effect models showing h.c. of determination (R2 = 0.49 versusR2 = 0.04) when relating the variations of AFR to the heart rate features. However, when correcting for the other factors, the mixed-effect model showed the best fit (R2 = 0.04). AFR was found to be significantly affected by previous catheter ablations (p< 0.05), episode duration (p< 0.05), and irregularity of theRRinterval series (p< 0.05).Significance. Mixed-effect models are more suitable for AFR modelling. AFR was shown to be faster in episodes with longer duration, less organizedRRintervals and after several ablation procedures.


Assuntos
Fibrilação Atrial , Humanos , Masculino , Feminino , Fibrilação Atrial/cirurgia , Frequência Cardíaca/fisiologia , Eletrocardiografia , Fatores de Tempo , Próteses e Implantes
14.
Med Phys ; 50(2): 750-762, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36310346

RESUMO

PURPOSE: Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. METHODS: The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. RESULTS: The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. CONCLUSIONS: The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Imagens de Fantasmas , Padrões de Referência , Processamento de Imagem Assistida por Computador/métodos
15.
Med Biol Eng Comput ; 61(2): 317-327, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409405

RESUMO

Methods for characterization of atrial fibrillation (AF) episode patterns have been introduced without establishing clinical significance. This study investigates, for the first time, whether post-ablation recurrence of AF can be predicted by evaluating episode patterns. The dataset comprises of 54 patients (age 56 ± 11 years; 67% men), with an implantable cardiac monitor, before undergoing the first AF catheter ablation. Two parameters of the alternating bivariate Hawkes model were used to characterize the pattern: AF dominance during the monitoring period (log(mu)) and temporal aggregation of episodes (beta1). Moreover, AF burden and AF density, a parameter characterizing aggregation of AF burden, were studied. The four parameters were computed from an average of 29 AF episodes before ablation. The risk of AF recurrence after catheter ablation using the Hawkes parameters log(mu) and beta1, AF burden, and AF density was evaluated. While the combination of AF burden and AF density is related to a non-significant hazard ratio, the combination of log(mu) and beta1 is related to a hazard ratio of 1.95 (1.03-3.70; p < 0.05). The Hawkes parameters showed increased risk of AF recurrence within 1 year after the procedure for patients with high AF dominance and high episode aggregation and may be used for pre-ablation risk assessment.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Fibrilação Atrial/cirurgia , Resultado do Tratamento , Medição de Risco , Ablação por Cateter/métodos , Eletrocardiografia
16.
Int J Cardiol ; 370: 356-365, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343795

RESUMO

AIMS: Wall shear stress (WSS) is involved in coronary artery plaque pathological mechanisms and modulation of gene expression. This study aims to provide a comprehensive haemodynamic and biological description of unstable (intact-fibrous-cap, IFC, and ruptured-fibrous-cap, RFC) and stable (chronic coronary syndrome, CCS) plaques and investigate any correlation between WSS and molecular pathways. METHODS AND RESULTS: We enrolled 24 CCS and 25 Non-ST Elevation Myocardial Infarction-ACS patients with IFC (n = 11) and RFC (n = 14) culprit lesions according to optical coherence tomography analysis. A real-time PCR primer array was performed on peripheral blood mononuclear cells for 17 different molecules whose expression is linked to WSS. Computational fluid dynamics simulations were performed in high-fidelity 3D-coronary artery anatomical models for three patients per group. A total of nine genes were significantly overexpressed in the unstable patients as compared to CCS patients, with no differences between IFC and RFC groups (GPX1, MMP1, MMP9, NOS3, PLA2G7, PI16, SOD1, TIMP1, and TFRC) while four displayed different levels between IFC and RFC groups (TNFα, ADAMTS13, EDN1, and LGALS8). A significantly higher WSS was observed in the RFC group (p < 0.001) compared to the two other groups. A significant correlation was observed between TNFα (p < 0.001), EDN1 (p = 0.036), and MMP9 (p = 0.005) and WSS values in the RFC group. CONCLUSIONS: Our data demonstrate that IFC and RFC plaques are subject to different WSS conditions and gene expressions, suggesting that WSS profiling may play an essential role in the plaque instability characterization with relevant diagnostic and therapeutic implications in the era of precision medicine.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Ruptura Cardíaca , Placa Aterosclerótica , Humanos , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/genética , Vasos Coronários/patologia , Leucócitos Mononucleares , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/genética , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Tomografia de Coerência Óptica/métodos , Ruptura Espontânea/metabolismo , Ruptura Espontânea/patologia , Angiografia Coronária/métodos , Galectinas/metabolismo
17.
Front Hum Neurosci ; 17: 1286621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259333

RESUMO

Emotions significantly shape decision-making, and targeted emotional elicitations represent an important factor in neuromarketing, where they impact advertising effectiveness by capturing potential customers' attention intricately associated with emotional triggers. Analyzing biometric parameters after stimulus exposure may help in understanding emotional states. This study investigates autonomic and central nervous system responses to emotional stimuli, including images, auditory cues, and their combination while recording physiological signals, namely the electrocardiogram, blood volume pulse, galvanic skin response, pupillometry, respiration, and the electroencephalogram. The primary goal of the proposed analysis is to compare emotional stimulation methods and to identify the most effective approach for distinct physiological patterns. A novel feature selection technique is applied to further optimize the separation of four emotional states. Basic machine learning approaches are used in order to discern emotions as elicited by different kinds of stimulation. Electroencephalographic signals, Galvanic skin response and cardio-respiratory coupling-derived features provided the most significant features in distinguishing the four emotional states. Further findings highlight how auditory stimuli play a crucial role in creating distinct physiological patterns that enhance classification within a four-class problem. When combining all three types of stimulation, a validation accuracy of 49% was achieved. The sound-only and the image-only phases resulted in 52% and 44% accuracy respectively, whereas the combined stimulation of images and sounds led to 51% accuracy. Isolated visual stimuli yield less distinct patterns, necessitating more signals for relatively inferior performance compared to other types of stimuli. This surprising significance arises from limited auditory exploration in emotional recognition literature, particularly contrasted with the pleathora of studies performed using visual stimulation. In marketing, auditory components might hold a more relevant potential to significantly influence consumer choices.

18.
Front Neurogenom ; 4: 1080794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234500

RESUMO

Introduction: Motor Imagery (MI)-based Brain Computer Interfaces (BCI) have raised gained attention for their use in rehabilitation therapies since they allow controlling an external device by using brain activity, in this way promoting brain plasticity mechanisms that could lead to motor recovery. Specifically, rehabilitation robotics can provide precision and consistency for movement exercises, while embodied robotics could provide sensory feedback that can help patients improve their motor skills and coordination. However, it is still not clear whether different types of visual feedback may affect the elicited brain response and hence the effectiveness of MI-BCI for rehabilitation. Methods: In this paper, we compare two visual feedback strategies based on controlling the movement of robotic arms through a MI-BCI system: 1) first-person perspective, with visual information that the user receives when they view the robot arms from their own perspective; and 2) third-person perspective, whereby the subjects observe the robot from an external perspective. We studied 10 healthy subjects over three consecutive sessions. The electroencephalographic (EEG) signals were recorded and evaluated in terms of the power of the sensorimotor rhythms, as well as their lateralization, and spatial distribution. Results: Our results show that both feedback perspectives can elicit motor-related brain responses, but without any significant differences between them. Moreover, the evoked responses remained consistent across all sessions, showing no significant differences between the first and the last session. Discussion: Overall, these results suggest that the type of perspective may not influence the brain responses during a MI- BCI task based on a robotic feedback, although, due to the limited sample size, more evidence is required. Finally, this study resulted into the production of 180 labeled MI EEG datasets, publicly available for research purposes.

19.
Front Oncol ; 12: 1016123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531029

RESUMO

Objective: The extent of response to neoadjuvant chemotherapy predicts survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal Ewing sarcoma and aims to investigate feature reproducibility and machine learning prediction of response to neoadjuvant chemotherapy. Materials and methods: This retrospective study included thirty patients with biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant chemotherapy before surgery at two tertiary sarcoma centres. 7 patients were poor responders and 23 were good responders based on pathological assessment of the surgical specimen. On pre-treatment T1-weighted and T2-weighted MRI, 2D and 3D tumour segmentations were manually performed. Features were extracted from original and wavelet-transformed images. Feature reproducibility was assessed through small geometrical transformations of the regions of interest mimicking multiple manual delineations, and intraclass correlation coefficient >0.75 defined feature reproducibility. Feature selection also consisted of collinearity and significance analysis. After class balancing in the training cohort, three machine learning classifiers were trained and tested on unseen data using hold-out cross-validation. Results: 1303 (77%) 3D and 620 (65%) 2D radiomic features were reproducible. 4 3D and 4 2D features passed feature selection. Logistic regression built upon 3D features achieved the best performance with 85% accuracy (AUC=0.9) in predicting response to neoadjuvant chemotherapy. Conclusion: Compared to 2D approach, 3D MRI radiomics of Ewing sarcoma had superior reproducibility and higher accuracy in predicting response to neoadjuvant chemotherapy, particularly when using logistic regression classifier.

20.
Med Biol Eng Comput ; 60(11): 3153-3168, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104609

RESUMO

Mechanisms of atrial fibrillation and the susceptibility to reentries can be impacted by the repolarization across the atria. Studies into atrial fibrillation ignore cell-to-cell heterogeneity due to electrotonic coupling. Recent studies show that cellular variability may have a larger impact on electrophysiological behaviour than assumed. This paper aims to determine the impact of cellular heterogeneity on the repolarization phase across the AF remodelled atria. Using a population of models approach, 10 anatomically identical atrial models were created to include cellular heterogeneity. Atrial models were compared with an equivalent homogenous model. Activation, APD90, and repolarization maps were used to compare models. The impact of electrotonic coupling in the tissue was determined through a comparison of RMP, APD20, APD50, APD90, and triangulation between regional atrial tissue and the single cell populations. After calibration, cellular heterogeneity does not impact atrial depolarization. Repolarization patterns were significantly impacted by cellular heterogeneity, with the APD90 across the LA increasing due to heterogeneity and the reverse occurring in the RA. Electrotonic coupling caused a reduction in variability across all biomarkers but did not fully remove variability. Electrotonic coupling resulted in an increase in APD20 and APD50, and reduced triangulation compared to isolated cell populations. Heterogeneity also caused a reduction in triangulation compared with regionally homogeneous atria.


Assuntos
Fibrilação Atrial , Potenciais de Ação , Fenômenos Eletrofisiológicos , Átrios do Coração , Humanos , Contração Miocárdica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...